Object Recognition with and without Objects

نویسندگان

  • Zhuotun Zhu
  • Lingxi Xie
  • Alan L. Yuille
چکیده

While recent deep neural network models have given promising performance on object recognition, they rely implicitly on the visual contents of the whole image. In this paper, we train deep neural networks on the foreground (object) and background (context) regions of images respectively. Considering human recognition in the same situations, networks trained on pure background without objects achieves highly reasonable recognition performance that beats humans to a large margin if only given context. However, humans still outperform networks with pure object available, which indicates networks and human beings have different mechanisms in understanding an image. Furthermore, we straightforwardly combine multiple trained networks to explore the different visual clues learned by different networks. Experiments show that useful visual hints can be learned separately and then combined to achieve higher performance, which confirms the advantages of the proposed framework.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data

Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...

متن کامل

Contours Extraction Using Line Detection and Zernike Moment

Most of the contour detection methods suffers from some drawbacks such as noise, occlusion of objects, shifting, scaling and rotation of objects in image which they suppress the recognition accuracy. To solve the problem, this paper utilizes Zernike Moment (ZM) and Pseudo Zernike Moment (PZM) to extract object contour features in all situations such as rotation, scaling and shifting of object i...

متن کامل

Object Recognition based on Local Steering Kernel and SVM

The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...

متن کامل

On Attributes of Objects in Object-Oriented Software Analysis

One of the modern paradigms to develop a system is object oriented analysis and design. In this paradigm, there are several objects and each object plays some specific roles. There is a sequence of activities to develop an analysis model. In the first step, we work in developing an initial use case model. Then in the second step, they identify a number of concepts and build a glossary of partic...

متن کامل

A NEURO-FUZZY GRAPHIC OBJECT CLASSIFIER WITH MODIFIED DISTANCE MEASURE ESTIMATOR

The paper analyses issues leading to errors in graphic object classifiers. Thedistance measures suggested in literature and used as a basis in traditional, fuzzy, andNeuro-Fuzzy classifiers are found to be not suitable for classification of non-stylized orfuzzy objects in which the features of classes are much more difficult to recognize becauseof significant uncertainties in their location and...

متن کامل

Objects Identification in Object-Oriented Software Development - A Taxonomy and Survey on Techniques

Analysis and design of object oriented is onemodern paradigms for developing a system. In this paradigm, there are several objects and each object plays some specific roles. Identifying objects (and classes) is one of the most important steps in the object-oriented paradigm. This paper makes a literature review over techniques to identify objects and then presents six taxonomies for them. The f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017